We present an alternative scheme for implementing the unconventional geometric two-qubit phase gate and prepar- ing multiqubit entanglement by using a frequency-modulated laser field to simultaneously illuminate all ions. Selecting the index of modulation yields selective mechanisms for coupling and decoupling between the internal and the external states of the ions. By the selective mechanisms, we obtain the unconventional geometric two-qubit phase gate, multiparticle Greenberger-Horne-Zeilinger states and highly entangled cluster states. Our scheme is insensitive to the thermal motion of the ions.
We propose two schemes for generating Greenberger-Horne-Zeilinger and W states of three distant atoms. In the present schemes, the atoms are individually trapped in three spatially separated optical cavities coupled by two optical fibres. Performing an adiabatic passage along dark states, the population of cavities and fibres excited is negligible under certain conditions. In addition, the spontaneous decay of atoms is also efficiently suppressed based on our proposals. Furthermore, the discussion about the entanglement fidelity is given and we point out that our schemes work robustly with small fluctuations of experimental parameters.
Feshbach resonance is a resonance for two-atom scattering with two or more channels,in which a bound state is achieved in one channel.We show that this resonance phenomenon not only exists during the collisions of massive particles,but also emerges during the coherent transport of massless particles,that is,photons confined in the coupled resonator arrays linked by a separated cavity or a tunable two level system(TLS).When the TLS is coupled to one array to form a bound state in this setup,the vanishing transmission appears to display the photonic Feshbach resonance.This process can be realized through various experimentally feasible solid state systems,such as the couple defected cavities in photonic crystals and the superconducting qubit coupled to the transmission line.The numerical simulation based on the finite-different time-domain(FDTD) method confirms our assumption about the physical implementation.
By using a two-mode mean-field approximation, we study the dynamics of the microcavities containing semiconductor quantum wells. The exact analytical solutions are obtained in this study. Based on these solutions, we show that the emission from the microcavity manifests periodic oscillation behaviour and the oscillation can be suppressed under a certain condition.
The steady-state optical bistability(OB) and optical multistability(OM) behavior in the quasi——type atomic system driven by a probe field and a coherent coupling field inside a unidirectional ring cavity are shown,and the effects of coupling-field detuning and coupling-field intensity on the OB and OM behavior are investigated. The transition from OB to OM or vice versa is found by varying the detuning of the coherent coupling field or by adjusting the intensity of the coupling field. The influence of the atomic cooperation parameter on the OM behavior is also discussed.