Complex loading paths were realized with cruciform specimens and biaxial loading testing machine. Experimental method for determining the subsequent yield locus of sheet metal was established. With this method,the subsequent yield loci of 5754O aluminum alloy sheet were obtained under complex loading paths. Theoretical subsequent yield loci based on Yld2000-2d yield criterion and three kinds of hardening modes were calculated and compared with the experimental results. The results show that the theoretical subsequent yield loci based on mixed hardening mode describe the experimental subsequent yield loci well,whereas isotropic hardening mode,which is widely used in sheet metal forming fields,predicts values larger than the experimental results. Kinematic hardening mode predicts values smaller than the experimental results and its errors are the largest.
To carry out biaxial tensile test in sheet metal, the biaxial tensile testing system was established. True stress—true strain curves of three kinds of aluminum alloy sheets for loading ratios of 4:1, 4:2, 4:3, 4:4, 3:4, 2:4 and 1:4 were obtained by conducting biaxial tensile test in the established testing systems. It shows that the loading path has a significant influence on the stress—strain curves and as the loading ratio increases from 4:1 to 4:4, the stress—strain curve becomes higher and n-value becomes larger. Experimental yield points for three aluminum alloy sheets from 0.2% to 2% plastic strain were determined based on the equivalent plastic work. And the geometry of the experimental yield loci were compared with the yield loci calculated from several existing yield criteria. The analytical result shows that the Barlat89 and Hosford yield criterion describe the general trends of the experimental yield loci of aluminum alloy sheets well, whereas the Mises yield criterion overestimates the yield stress in all the contours.