The unsteady Reynolds-averaged Navier-Stokes equations coupled with the k-co SST turbulence model are solved to obtain the steady and unsteady aerodynamic forces for airfoils and wings. The effects of vibration types and amplitudes on aerody- namic forces of airfoils and wings are studied. The deformation characteristics of a swept wing induced by steady aerodynamic load are presented. It is found that for a vibrating elastic wing at small and medium incidences, its mean aerodynamic loads are almost the same as those obtained from the static one. On the contrary, at high incidences especially around the stall incidence, the vibration may change the mean values. In addition, the larger amplitude is, the larger discrepancy will be. For a swept wing, the steady aerodynamic loads usually lead to the "pitching down" effect on the wing tip which delays the stall compared with a rigid one; But this phenomenon dose not occur on a aeroelastic wing which can induce the separation ahead and trigger the stall. The above conclusions are in good agreement with the scatter characteristics of wind-tunnel data. The reason why the data obtained from wind tunnel and CFD are different is also analyzed. Meanwhile, it can be an explanation for scatter phe- nomenon of wind-tunnel data, especially for high incidence cases, which remains a puzzle so far.
YE ZhengYinJIANG YueWenZHOU NaiZhenSONG BaoFangHE JiZhou
Liquid-filled elastic body dynamics is an important branch of fluid-solid coupling mechanics. It deals with the study of motion of a body and the liquid contained in the body under the interaction between the two,for example,a liquid-filled satellite,a fuel tank of an airplane,etc. The research on liquid-filled elastic body dynamics is usually done by the variational method since the method has a feature of treating things as a whole. Considering the elastic motion of the liquid-filled body and the surface tension effect on the liquid-gas interface,liquid-solid interface and gas-solid interface,the present paper establishes a quasi-Hamiltonian variational principle for the above-mentioned system. After finding the stationary-value conditions of its functional obtained,a complete system of governing equations consisting of the stationary value conditions,preconditions and constraint conditions is established,and then the equations are reduced into some known ones in a special case.
HAO MingWang & YE ZhengYin National Key Laboratory of Aerodynamic Design and Research,Northwestern Polytechnical University,Xi’an 710072,China