With first-principles virtual-crystal approximation calculations, we systematically investigate the geometric and elec- tronic structures as well as the phase transition of lead zirconate titanate (PbZr 1-xTixO3 or PZT) as a function of Ti content for the whole range of 0 〈 XTi 〈 1. It can be found that, with the increase of the Ti content, the PbZr1-xTixO3 solid solutions undergo a rhombohedral-to-tetragonal phase transition, which is consistent with the experimental results. In addition, we also show the evolution in geometric and electronic structures of rhombohedral and tetragonal PbZr1-xTixO3 with the increasing content of Ti.