A graph is outer-1-planar if it can be drawn in the plane so that all vertices are on the outer face and each edge is crossed at most once.Zhang et al.(Edge covering pseudo-outerplanar graphs with forests,Discrete Math 312:2788-2799,2012;MR2945171)proved that the linear arboricity of every outer-1-planar graph with maximum degree△is exactly[△/2] provided that△=3or△≥5 and claimed that there are outer-1-planar graphs with maximum degree △=4 and linear arboricity[[(O+1)/2]=3.It is shown in this paper that the linear arboricity of every outer-1-planar graph with maximum degree 4 is exactly 2 provided that it admits an outer-1-planar drawing with crossing distance at least 1 and crossing width at least 2,and moreover,none of the above constraints on the crossing distance and Crossing width can be removed..Besides,a polynomial-time algorithm for constructing a path-2-coloring(i.e.,an edge 2-coloring such that each color class induces a linear forest,a disjoint union of paths)of such an outer-1-planar drawing is given.
In this paper, we prove that 2-degenerate graphs and some planar graphs without adjacent short cycles are group (△ (G)+1)-edge-choosable, and some planar graphs with large girth and maximum degree are group △(G)-edge-choosable.
A graph is outer-1-planar if it can be drawn in the plane so that all vertices are on the outer face and each edge is crossed at most once.It is known that the list edge chromatic numberχ′l(G)of any outer-1-planar graph G with maximum degreeΔ(G)≥5 is exactly its maximum degree.In this paper,we proveχ′l(G)=Δ(G)for outer-1-planar graphs G withΔ(G)=4 and with the crossing distance being at least 3.
A graph is 1-planar if it can be drawn on a plane so that each edge is crossed by at most one other edge. A plane graph with near-independent crossings or independent crossings, say NIC-planar graph or IC-planar graph, is a 1-planar graph with the restriction that for any two crossings the four crossed edges are incident with at most one common vertex or no common vertices, respectively. In this paper, we prove that each 1-planar graph, NIC-planar graph or IC-planar graph with maximum degree A at least 15, 13 or 12 has an equitable △-coloring, respectively. This verifies the well-known Chen-Lih-Wu Conjecture for three classes of 1-planar graphs and improves some known results.
A graph is NIC-planar if it admits a drawing in the plane with at most one crossing per edge and such that two pairs of crossing edges share at most one common end vertex. It is proved that every NIC-planar graph with minimum degree at least 2(resp. 3) contains either an edge with degree sum at most 23(resp. 17) or a 2-alternating cycle(resp. 3-alternating quadrilateral). By applying those structural theorems, we confirm the Linear Arboricity Conjecture for NIC-planar graphs with maximum degree at least 14 and determine the linear arboricity of NIC-planar graphs with maximum degree at least 21.