您的位置: 专家智库 > >

国家自然科学基金(10971029)

作品数:4 被引量:1H指数:1
相关作者:潮小李韩英波王小六更多>>
相关机构:东南大学信阳师范学院更多>>
发文基金:国家自然科学基金更多>>
相关领域:理学更多>>

文献类型

  • 4篇中文期刊文章

领域

  • 4篇理学

主题

  • 1篇PL
  • 1篇PRODUC...
  • 1篇SPECIA...
  • 1篇SURFAC...
  • 1篇TENSOR
  • 1篇URI
  • 1篇ANGLE
  • 1篇CONSTA...
  • 1篇CONSTR...
  • 1篇CURVES
  • 1篇DOUBLY
  • 1篇MANIFO...
  • 1篇MAPS
  • 1篇ENERGI...
  • 1篇MAP
  • 1篇INDEFI...
  • 1篇TANGEN...
  • 1篇SUBMAN...
  • 1篇HERMIT...
  • 1篇BIHARM...

机构

  • 2篇东南大学
  • 1篇信阳师范学院

作者

  • 1篇王小六
  • 1篇韩英波
  • 1篇潮小李

传媒

  • 2篇Journa...
  • 1篇Acta M...
  • 1篇Scienc...

年份

  • 2篇2013
  • 1篇2011
  • 1篇2010
4 条 记 录,以下是 1-4
排序方式:
ON SPACELIKE AUSTERE SUBMANIFOLDS IN PSEUDO-EUCLIDEAN SPACE
2011年
In this article, we construct some spacelike austere submanifolds in pseduoEuclidean spaces. We also get some indefinite special Lagrangian submanifolds by constructing twisted normal bundle of spacelike austere submanifolds in pseduo-Euclidean spaces.
东瑜昕韩英波
Partial energies monotonicity and holomorphicity of Hermitian pluriharmonic maps被引量:1
2013年
In this paper, we introduce the notion of Hermitian pluriharmonic maps from Hermitian manifold into Kiihler manifold. Assuming the domain manifolds possess some special exhaustion functions and the vecotor field V = JMδJM satisfies some decay conditions, we use stress-energy tensors to establish some monotonicity formulas of partial energies of Hermitian pluriharmonic maps. These monotonicity inequalities enable us to derive some holomorphicity for these Hermitian pluriharmonic maps.
YANG GuiLinHAN YingBoDONG YuXin
Constant angle surfaces constructed on curves
2013年
The Frenet-Serret formula is used to characterize the constant angle ruled surfaces in R3. When the surfaces are the tangent developmental and normal surfaces, that is, r(s, v) = tr(s) +v(cosα(s) . t(s) +sina(s) . n(s)), it is shown that each of these surfaces is locally isometric to a piece of a plane or a certain special surface. When the surfaces are normal and binormal surfaces, that is, r ( s, v ) = σ ( s ) + v ( cosa ( s ) . n(s) + since(s) . b(s)), it is shown that each of these surfaces is locally isometric to a piece of a plane or a cylindrical surface.
王小六潮小李
Biharmonic product maps between doubly warped product manifolds
2010年
The biharmonicity of the product map Φ2=φ×ψ and the two generalized projections φ-and ψ-are analyzed. Some results are obtained, that is, Φ2 is a proper biharmonic map if and only if b is a non-constant solution of -1/f2 Jφ(dφ(grad(lnb)))+n/2 grad|dφ(grad(lnb))|2=0 and f is a non-constant solution of -1/b2Jψ(dψ(grad(lnf)))+m/2grad|dψ(grad(lnf))|2=0, and Φ2=φ×ψ is a proper biharmonic map if and only if φ-and ψ-are proper biharmonic maps.
韩英波
共1页<1>
聚类工具0