粒子滤波(Partic le F ilter)是一种处理非线性和非高斯动态系统状态估计的有效技术.提出了一种基于粒子滤波的红外目标稳健跟踪新方法.在粒子滤波理论框架下,红外目标的状态后验概率分布用加权随机样本集表示,通过这些随机样本的Bayesian迭代进化实现红外目标的跟踪.系统状态转移模型选择为简单的二阶自回归模型,并自适应地确定系统噪声方差.红外目标的描述利用目标区域的灰度分布,该灰度分布通过核概率密度估计建立.通过计算参考目标的灰度分布和目标样本的灰度分布之间的Bhattacharyya距离,建立系统观测概率模型.实验结果表明该方法是有效的和稳健的.
A novel approach based on independent component analysis (ICA) for speckle filtering and target extraction of synthetic aperture radar (SAR) images is proposed using adaptive space separation with weighted information entropy (WIE) incorporated. First the basis and the independent components are respectively obtained by ICA technique, and WIE of the image is computed; then based on the threshold computed from function T-WIE (threshold versus weighted-information-entropy), independent components are adaptively separated and the bases are classified accordingly. Thus, the image space is separated into two subspaces: "clean" and "noise". Then, a proposed nonlinear operator ABO is applied on each component of the 'clean' subspace for further optimization. Finally, recovery image is obtained reconstructing this subspace and target is easily extracted with binarisation. Note that here T-WIE is an interpolated function based on several representative target SAR images using proposed space separation algorithm.
An approach for synthetic aperture radar (SAR) image de-noising based on independent component analysis (ICA) basis images is proposed. Firstly, the basis images and the code matrix of the original image are obtained using ICA algorithm. Then, pointwise Hoder exponent of each basis is computed as a cost criterion for basis enhancement, and then the enhanced basis images are classified into two sets according to a separation rule which separates the clean basis from the original basis. After these key procedures for speckle reduction, the clean image is finally obtained by reconstruction on the clean basis and original code matrix. The reconstructed image shows better visual perception and image quality compared with those obtained by other traditional techniques.