The theoretical research on the propulsive principle of aquatic animal becomes more important and attracted more researchers to make efforts on it. In the present study, a computational fluid dynamic (CFD) simulation of a three-dimensional traveling-wave undulations body of tuna has been developed to investigate the fluid flow features and vorticity structures around this body when moving in a straight line. The undulation only takes place in the posterior half of the fish, and the tuna-tail is considered as a lunate fin oscillating with the mode combined swaying with yawing. A Reynolds-averaged Navier-Stokes (RANS) equation is developed, employing a control-volume method and a k-omega SST turbulent model; meanwhile an unstructured tetrahedral grid, which is generated for the three-dimensional geometry, is used based on the deformation of the hind parts of the body and corresponding movement of the tail. We calculated the hydrodynamic performance of tuna-like body when a tuna swims in a uniform velocity, and compared the input power coefficient, output power coefficient and propulsive efficiency of the oscillating tuna-tail with or without body vortex shedding. Additionally, the load distribution on the body, flow features and vorticity structures around the body were demonstrated. The effect of interaction between the body-generated vortices and the tail-generated vorticity on the hydrodynamic performance can be obtained.
Generally the underwater bio-robots take the tail fin as propulsor, and combined with pectoral fin they can manoeuvre agilely and control their position and movement at will. In nature, a lot of fishes realize to suspend itself in water to go forward and to move back up by the pectoral fin moving complexly. So that it is significant theoretically and valuable for practical application to investigate the propulsive principle and hydrodynamic performance of pectoral fin, and find the method utilizing the pectoral fin to manoeuvre the underwater bio-robot agilely. In this paper, a two degree of freedom (DoF) motion model is established for a rigid pectoral fin, and the hydrodynamic performances of the pectoral fin are studied by use of the pectoral fin propulsive experimental platform developed by Harbin Engineering University, simultaneously the hydrodynamic performance of the pectoral fin is analyzed when some parameters change. Then, through the secondary development of FLUENT (CFD code) software, the hydrodynamic performances of rigid pectoral fin in viscous flows are calculated and the results are compared with the latest experimental results. The research in this paper will provide the theoretical reference for the design of the manoeuvring system imitating pectoral fin, at the same time will become the foundation for the development of the small underwater bio-robot.
A comprehensive numerical simulation of the hydrodynamic performance of a caudal fin with unsymmetric flapping motion is carried out. The unsymmetrical motion is induced by adding a pitch bias or a heave bias. A numerical simulation program based on the unsteady panel method is developed to simulate the hydrodynamics of an unsymmetrical flapping caudal fin. A CFD code based on Navier-Stokes equations is used to analyze the flow field. Computational results of both the panel method and the CFD method indicate that the hydrodynamics are greatly affected by the pitch bias and the heave bias. The mean lateral force coefficient is not zero as in contrast with the symmetrical flapping motion. By increasing the pitch bias angle, the mean thrust force coefficient is reduced rapidly. By adding a heave bias, the hydrodynamic coefficients are separated as two parts: in one part, the amplitude is the heave amplitude plus the bias and in the other part, it is the heave amplitude minus the bias. Analysis of the flow field shows that the vortex distribution is not symmetrical, which generates the non-zero mean lateral force coefficient.