We investigate the extended (2+ 1)-dimensional shaUow water wave equation. The binary Bell polynomials are used to construct bilinear equation, bilinear Backlund transformation, Lax pair, and Darboux covariant Lax pair for this equation. Moreover, the infinite conservation laws of this equation are found by using its Lax pair. All conserved densities and fluxes are given with explicit recursion formulas. The N-soliton solutions are also presented by means of the Hirota bilinear method.
In this paper, a procedure for constructing discrete models of the high dimensional nonlinear evolution equanons is presented. In order to construct the difference model, with the aid of the potential system of the original equation and compatibility condition, the difference equations which preserve all Lie point symmetries can be obtained. As an example, invariant difference models of the (2+1)-dimensional Burgers equation are presented.
The nonlocal symmetry of the mKdV equation is obtained from the known Lax pair; it is successfully localized to Lie point symmetries in the enlarged space by introducing suitable auxiliary dependent variables. For the closed prolongation of the nonlocal symmetry, the details of the construction for a one-dimensional optimal system are presented. Furthermore, using the associated vector fields of the obtained symmetry, we give the reductions by the one-dimensional sub-algebras and the explicit analytic interaction solutions between cnoidal waves and kink solitary waves, which provide a way to study the interactions among these types of ocean waves. For some of the interesting solutions, the figures are given to show their properties.