Two consecutive magnetic flux ropes, separated by less than 30 s(Dt \ 30 s), are observed within one magnetic reconnection diffusion region without strong guide field in the Earth's magnetotail by Cluster multispacecraft. The flux ropes are characterized by bipolar signatures of the south–north magnetic field component Bz accompanied with strong core magnetic field By, intense current J and density depletions inside of them. In spite of the small but non-trivial global scale negative guide field(–By), there exists a directional change of the core fields of two flux ropes, i.e.,-Byfor the first one, and Byfor the second one. The directions of the core fields are the same as the ambient cross-tail magnetic field component(By) just outside of flux ropes. Therefore, we suggest that the core field of flux ropes is formed by compression of the local preexisting Byand that the directional change of core field is due to the change of local preexisting By. Such a change in ambient Bymight be caused by some microscale physics.
With coordinated observations of the NOAA 15 satellite and OUL magnetometer station in Finland, we report that the elec- tromagnetic ion cyclotron (EMIC) waves which were stimulated by the compression of the magnetosphere drive relativistic electron precipitation in geoquiescence on 1 Jan 2007. After an enhancement of solar wind dynamic pressure (SWDP), a day- side Pcl pulsation was observed by the OUL station. Such a Pcl pulsation is caused by an EMIC wave which propagates from the generation source to lower altitudes. Simultaneously, the NOAA 15 satellite registered an enhancement of precipitating electron count rates with energies 〉3 MeV within the anisotropic zone of protons. This phenomenon is coincident with the quasi-linear theoretical calculation presented in this paper. Our observations suggest that after a positive impulse of solar wind, the compression-related EMIC waves can drive relativistic electrons precipitation and play a pivotal role in the dynamic of ra- diation belts.
WANG De DongYUAN Zhi GangDENG Xiao HuaZHOU MengHUANG Shi YongLI MingLI Hui MinLI Hai MengRAITA TeroPANG Ye