Five novel donor-acceptor (D-A) conjugated cooligomers (F4B-hP, F5B-hP, F5B2[1,2]-hP, F5B2[I,3]-hP and F7B2[1,2]-hP) were synthesized. The absorption spectra of the cooligomers cover a wide range from 300 nm to 630 nm. The cooligomers could form films featured by alternating D-A lamellar nanostructures with the periods relative to the molecular lengths after thermal annealing or solvent vapor annealing. Single molecule solar cells were fabricated, and FSB-hP exhibited the best device performance. When the film of FSB-hP was thermally annealed, a power conversion efficiency (PCE) of 1.56% was realized. With solvent vapor annealing, the PCE could be further improved to 1.72% with a short-circuit current (J_SC) of 5.76 mA/cm2, an open-circuit voltage (Voc) of 0.87 V and a fill factor (FF) of 0.34.
The preparation of large area coverage of films with uniaxially aligned poly(3-hexylthiophene) (P3HT) nanofibers by using zone-casting approach is reported. The length and the orientation of the nanofibers are defined by the solubility of the solvent, the P3HT molecular weight and the substrate temperature. The length of the oriented nanofibers could be increased from 1 pan to more than 10 ~ma by adding poor solvent into the P3HT solution. It is found that for P3HT of relatively low molecular weight, a solvent with relatively low solubility has to be chosen to get the oriented film. While for the high molecular weight P3HT, the solvent with a relatively high solubility has to be used. The well-aligned film could be obtained because of the solute concentration gradient in the region where the critical concentration is reached during the zone-casting process. Particularly, the solvent evaporation rate and crystallization rate must be chosen properly to satisfy the stationary conditions above, which were controlled by an appropriate choice of solvent and substrate temperature. The film prepared by zone-casting approach had microcrystalline P3HT domains with more inter-chain order than spin-coating film. Meanwhile, the P3HT π-π stacking direction was parallel to the alignment direction of the nanofibers.
We report on the effects of aggregation of P3HT with ordered conformation in solution on improving the uniaxial alignment of the P3HT nanofibers by zone casting. Two approaches were employed to change the aggregation of P3HT: P3HT blending with coil insulating polymer and ultrasonic oscillating. The insulator polymer (i.e. PS) which has good solubility in the solution would disturb the aggregation of P3HT to prevent the chains entanglement. The ultrasonic oscillation can further improve the P3HT aggregation with ordered conformation in the solution. As a result, the P3HT nanofibers in the film grew much orientedly by zone casting the ultrasonic oscillating P3HT]PS polymer blends solution than the same solvent P3HT solution without ultrasonic oscillating and blending. The P3HT π-π stacking direction is parallel to the alignment direction of the nanofibers. Meanwhile, the P3HT/PS blend ratio and PS molecular weight have influence on the uniaxial alignment of P3HT nanofibers. Only P3HT/PS is 1:1, the P3HT nanofibers oriented well. The low molecular weight PS can make the P3HT nanofibers orient better than that of the high molecular weight.
Xiang GaoJian-Gang LiuYue SunRu-Bo XingYan-Chun Han