By improved projective equation approach and a linear variable separation approach, a new family of exact solutions of the (2+1)-dimensional Boiti-Leon-Pempinelli (BLP) system is derived. Based on the derived solitary wave solution, some dromion and solitoff excitations and chaotic behaviours are investigated.
With the help of the Maple symbolic computation system and the projective equation approach,a new family of variable separation solutions with arbitrary functions for the(2+1)-dimensional generalized Breor-Kaup(GBK) system is derived.Based on the derived solitary wave solution,some chaotic behaviors of the GBK system are investigated.
With the help of the symbolic computation system, Maple and Riccati equation (ξ' = ao + a1ξ+ a2ξ2), expansion method, and a linear variable separation approach, a new family of exact solutions with q = lx + my + nt + Г(x,y, t) for the (2+1)-dimensional generalized Calogero-Bogoyavlenskii-Schiff system (GCBS) are derived. Based on the derived solitary wave solution, some novel localized excitations such as fusion, fission, and annihilation of complex waves are investigated.