Thermal property is one of the most important properties of light-emitting diode (LED). Thermal property of LED packaging material determines the heat dissipations of the phosphor and the chip surface, accordingly having an influence on the light-emitting efficiency and the life-span of the device. In this paper, photoacoustic piezoelectric (PAPE) technique has been employed to investigate the thermal properties of polyvinyl alcohol (]?VA) and silicon dioxide, which are the new and the traditional packaging materials in white LED, respectively. Firstly, the theory of PAPE technique has been developed for two-layer model in order to investigate soft materials; secondly, the experimental system has been set up and adjusted by measuring the reference sample; thirdly, the thermal diffusivities of PVA and silicon dioxide are measured and analysed. The experimental results show that PVA has a higher thermal diffusivity than silicon dioxide and is a better packaging material in the sense of thermal diffusivity for white LED.