A weighted Koppelman-Leray-Norguet formula of (r, s) differential forms on a local q-concave wedge in a complex manifold is obtained. By constructing the new weighted kernels, the authors give a new weighted Koppelman-Leray-Norguet formula without boundary integral of (r, s) differential forms, which is different from the classical one. The new weighted formula is especially suitable for the case of the local g-concave wedge with a non-smooth boundary, so one can avoid complex estimates of boundary integrals and the density of integral may be not defined on the boundary but only in the domain. Moreover, the weighted integral formulas have much freedom in applications such as in the interpolation of functions.
A new Koppelman-Leray-Norguet formula of (p,q) differential forms for a strictly pseudoconvex polyhedron with not necessarily smooth boundary on a Stein manifold is obtained, and an integral representation for the solution of -equation on this domain which does not involve integrals on boundary is given, so one can avoid complex estimates of boundary integrals.
Using the invariant integral kernel introduced by Demailly and Laurent-Thiebaut, complex Finsler metric and nonlinear connection associating with Chern-Finsler connection, we research the integral representation theory on complex Finsler manifolds. The Koppelman and Koppelman-Leray formulas are obtained, and the \(\overline \partial \)-equations are solved.