您的位置: 专家智库 > >

国家自然科学基金(TY10126033)

作品数:3 被引量:3H指数:1
发文基金:国家自然科学基金更多>>
相关领域:理学更多>>

文献类型

  • 3篇中文期刊文章

领域

  • 3篇理学

主题

  • 2篇Q
  • 1篇PARTIA...
  • 1篇PSEUDO
  • 1篇STRICT...
  • 1篇WITHOU...
  • 1篇COMPLE...
  • 1篇CONNEC...
  • 1篇FORMUL...
  • 1篇INVARI...
  • 1篇LOCAL
  • 1篇P
  • 1篇OVERLI...
  • 1篇WEIGHT...
  • 1篇CONCAV...
  • 1篇WEDGE

传媒

  • 2篇Acta M...
  • 1篇Scienc...

年份

  • 1篇2004
  • 2篇2003
3 条 记 录,以下是 1-3
排序方式:
WEIGHTED KOPPELMAN-LERAY-NORGUET FORMULAS ON A LOCAL q-CONCAVE WEDGE IN A COMPLEX MANIFOLD
2003年
A weighted Koppelman-Leray-Norguet formula of (r, s) differential forms on a local q-concave wedge in a complex manifold is obtained. By constructing the new weighted kernels, the authors give a new weighted Koppelman-Leray-Norguet formula without boundary integral of (r, s) differential forms, which is different from the classical one. The new weighted formula is especially suitable for the case of the local g-concave wedge with a non-smooth boundary, so one can avoid complex estimates of boundary integrals and the density of integral may be not defined on the boundary but only in the domain. Moreover, the weighted integral formulas have much freedom in applications such as in the interpolation of functions.
邱春晖姚宗元
A NEW FORMULA WITHOUT BOUNDARY INTEGRALS ON A STEIN MANIFOLD被引量:2
2003年
A new Koppelman-Leray-Norguet formula of (p,q) differential forms for a strictly pseudoconvex polyhedron with not necessarily smooth boundary on a Stein manifold is obtained, and an integral representation for the solution of -equation on this domain which does not involve integrals on boundary is given, so one can avoid complex estimates of boundary integrals.
邱春晖
Integral formulas for differential forms of type (p,q) on complex Finsler manifolds被引量:1
2004年
Using the invariant integral kernel introduced by Demailly and Laurent-Thiebaut, complex Finsler metric and nonlinear connection associating with Chern-Finsler connection, we research the integral representation theory on complex Finsler manifolds. The Koppelman and Koppelman-Leray formulas are obtained, and the \(\overline \partial \)-equations are solved.
QIU Chunhui ZHONG Tongde
共1页<1>
聚类工具0