In this paper, improvements of resistive random access memory (RRAM) using doping technology are summarized and analyzed. Based on a Cu/ZrO2/Pt device, three doping technologies with Ti ions, Cu, and Cu nanocrystal, respectively, are adopted in the experiments. Compared to an undoped device, improvements focus on four points: eliminating the electroforming process, reducing operation voltage, improving electrical uniformity, and increasing device yield. In addition, thermal stability of the high resistance state and better retention are also achieved by the doping technology. We demonstrate that doping technology is an effective way of improving the electrical performance of RRAM.
WANG YanLIU OiLU HangBingLONG ShiBingWANG WeiLI YingTaoZHANG SenLIAN WenTaiYANG JianHongLIU Ming
This paper presents a 65-nm 1-Gb NOR-type floating-gate flash memory,in which the cell device and chip circuit are developed and optimized.In order to solve the speed problem of giga-level NOR flash in the deep submicron process,the models of long bit-line and word-line are first given,by which the capacitive and resistive loads could be estimated.Based on that,the read path and key modules are optimized to enhance the chip access property and reliability.With the measurement results,the flash memory cell presents good endurance and retention properties,and the macro is operated with 1-ls/byte program speed and less than 50-ns read time under 3.3 V supply.
In this paper, a WO3-based resistive random access memory device composed of a thin film of WO3 sandwiched between a copper top and a platinum bottom electrodes is fabricated by electron beam evaporation at room temperature. The reproducible resistive switching, low power consumption, multilevel storage possibility, and good data retention characteristics demonstrate that the Cu/WO3/Pt memory device is very promising for future nonvolatile memory applications. The formation and rupture of localised conductive filaments is suggested to be responsible for the observed resistive switching behaviours.
Resistive random access memory(RRAM) has been considered as one of the most promising candidates for next-generation nonvolatile memory, due to its advantages of simple device structure, excellent scalability, fast operation speed and low power consumption. Deeply understanding the physical mechanism and effectively controlling the statistical variation of switching parameters are the basis of fostering RRAM into commercial application. In this paper, based on the deep understanding on the mechanism of the formation and rupture of conductive filament, we summarize the methods of analyzing and modeling the statistics of switching parameters such as SET/RESET voltage, current, speed or time. Then, we analyze the distributions of switching parameters and the influencing factors. Additionally, we also sum up the analytical model of resistive switching statistics composed of the cell-based percolation model and SET/RESET switching dynamics. The results of the model can successfully explain the experimental distributions of switching parameters of the Ni O- and Hf O2-based RRAM devices. The model also provides theoretical guide on how to improve the uniformity and reliability such as disturb immunity. Finally, some experimental approaches to improve the uniformity of switching parameters are discussed.
We report a facile method to grow multi-sectional TiO2 nanotube arrays consisting of alternating bamboo-shaped and smooth-walled nanotube sections by anodization.Two key factors are necessary for obtaining these morphologies.First,in order to avoid possible disruptions between the conjoint sections of the nanotube,the distribution of hydrogen ions is suggested not to be fiercely disturbed when switching from the first to the second stage.Second,to avoid the disruption of the nanotube at the joint which results from the disparity in diameters between sections,the direct current voltage is set to be the maximum of the square wave voltage.These newly developed TiO2 nanotube arrays are expected to have potential applications in solar cells,drug release and delivery systems.
LI ShiQi,YIN JianBo & ZHANG GengMin Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics,Peking University,Beijing 100871,China
Resistive random access memory (RRAM) has received significant research interest because of its promising potential in terms of down-scaling,high density,high speed and low power. However,its endurance,retention and uniformity are still imperfect. In this article,the physical mechanisms of filament-type RRAM and the approaches for improving the switching performance,including doping,process optimization and interface engineering,are introduced.
LIAN WenTaiLONG ShiBingLU HangBingLIU QiLI YingTaoZHANG SenWANG YanHUO ZongLiangDAI YueHuaCHEN JunNingLIU Ming