According to the test results of the physical and mechanical properties of similar materials in various quality mixture, a type of material with obvious tendency of rockburst was selected to produce a large-size model to simulate rockburst phenomena in tunnels. The prototype model comes from a typical section of diversion tunnels in Jinping Hydropower Station in China. The simulation of excavating tunnels is carried out by opening a hole in the model after loading. The modeling results indicated that under the condition of normal stresses in the model boundaries the arch top, spandrel and side walls of the tunnel produced an obvious jump reaction of stress and strain and the acoustic emission counts of the surrounding rock also increased rapidly in a different time period after the "tunnel" excavation, showing the clear features of rockburst. The spalling, buckling and breaking occurred in the surrounding rock of model in conditions of over loading. It is concluded that the modeling tunnel segment in Jinping Hydropower Station is expected to form the tensile rockburst with the pattern of spalling, buckling and breaking.
Although the study of TM(Thermo Mechanics),HM(Hydraulic-Mechanics) and THM(Thermo-Hydraulic-Mechanics) coupling under a loading test have been under development,rock failure analysis under THM coupling and unloading is an emerging topic.Based on a high temperature triaxial unloading seep test for phyllite,this paper discusses the deformation and failure mechanism of phyllites under the "H M,T→H,T→M" incomplete coupling model with unloading conditions.The results indicate that the elastic modulus and initial permeability decrease and the Poisson's ratio increases with increasing temperature;the elastic modulus decreases and the Poisson's ratio and initial permeability increase with increasing water pressure.During the unloading process,rock penetrability is small at the initial elastic deformation phase,but the penetrability increases near the end of the elastic deformation phase;mechanisms involving temperature and water pressure affect penetrability differently.Phyllite failure occurs from the initial thermal damage of the rock materials,splitting and softening(which is caused by pore water pressure),and the pressure difference which is formed from the loading axial pressure and unloading confining pressure.The phyllite failure mechanism is a transtensional(tension-shearing) failure.