The lattice parameters, magnetic phase transition, Curie temperature and magnetocaloric properties for (Gd1-xTbx)5Si1.72- Ge2.28 alloys with x = 0, 0.15, 0.20 and 0.25 were investigated by X-ray powder diffractometry and magnetization measurements. The results show that suitable partial substitution of Tb in Gd5Si1.72Ge2.28 compound remains the first-order magnetic-crystallographic transition and enhances the magnetic entropy change, although Tb substitution decreases the Curie temperature (TC) of the compounds. The magnetic entropy change of (Gd1-xTbx)5Si1.72Ge2.28 alloys retains a large value in the low magnetic field of 1.0 T. The maximum magnetic entropy change for (Gd0.80Tb0.20)5Si1.72Ge2.28 alloy in the magnetic field from 0 to 1.0 T reaches 8.7 J/(kg·K), which is nearly 4 times as large as that of (Gd0.3Dy0.7)5Si4 compound (|-Smax| = 2.24 J/(kg·K), T_C = 198 K).
The phases and magnetocaloric effect in the alloys Tb(Co1-xSnx)2 with x = 0, 0.025, 0.050, 0.075, 0. 100 were investigated by X-ray diffraction analysis and magnetization measurement. The substitution of Sn in TbCo2 was limited. The cubic MgCu2-type structure for the sample of TbCo2 was confirmed by the results of X-ray powder diffraction and the rest samples consist of the TbCo2 phase mainly, together with some TbCo3 and Tb5Sn3 impurity phases. The impurity phases increase with the increase of Sn contents. The magnetic phase transition in all samples keeps second-order transition. Tc increases slightly by Sn substitution from 230 K of the alloy with x = 0 to 233 K of the alloy with x = 0.050 and then a slight decrease for higher concentration of x. The maximum magnetic entropy change in the samples Tb (Co1- x Snx)2 with x =0, 0.025, 0.050, 0.075 are 3.44, 2.29, 1.64, 1.16 J·kg^-1·K^-1, respectively, with the applied field change from 0 to 2.0 T.
用超声波化学法合成了纳米尖晶石型铁酸镁(MgFe_2O_4)粉末,并用 X 射线衍射(XRD)、电子透射电镜(TEM)、红外光谱对产品的纯度、结晶度,粒径以及内部形态及结构进行了分析表征。结果表明:当镁和铁以 1:2 的摩尔比配合、超声频率为 20.81 kHz、超声辐射 50 min 时,可得到纯度较高、结晶度好、粒径分布窄的尖晶石型铁酸镁纳米颗粒。
The magnetocaloric effect in alloys Gd(Al1-xCox)2 with x = 0, 0.05, and 0.10 were investigated using X-ray diffraction (XRD) and magnetization measurements. It was found that three alloys crystallized in a single phase with MgCu2-type structure. The lattice parameter and Curie temperature decreased with increasing Co content, whereas the magnetic-entropy change increased. With a magnetic-field change of 2 T, the maximum of the magnetic-entropy change reached 4.6 J·kg^-1·K^-1 near Curie temperature at approximately 95 K in the alloy GdAl1.8Co0.2, which appeared to be an alternative candidate for active magnetic refrigerants working in the temperature range centered at 100 K.
The phases and the magnetocaloric effect in the alloys R(Co1-xSnx)2 with X = 0, 0.025, 0.050, 0.075, and 0.100 were investigated by X-ray diffraction analysis and magnetization measurement. The substitution of Sn in RCo2 is limited. The cubic MgCu2-type structure for the alloys of RCo2 was confirmed by X-ray powder diffraction and the remaining alloys mainly consisted of the RCo2 phase, along with some RCo3 and R5Sn3 impurity phases. The impurity phases increase with the increase of Sn content. The Tc of the alloys is not very sensitive to the Sn substitution for Dy(Co1-xSnx)2 and Tb(Co1-xSnx)2, whereas in Gd(Co1-xSnx)2, the Curie temperatures significantly increase. The maximum magnetic entropy changes in the alloys Dy(Co1-xSnx)2 (x = 0, 0.025, 0.050, 0.075) are 5.78, 5.43, 3.88, and 2.98 J·kg^-1·K^-1, respectively, and those in the Tb(Co1-xSnx)2 (x = 0, 0.025) are 3.44, and 2.29 J·kg^-1·K^-1 respectively in the applied field change of 0-2.0 T.