Baseline offset in digital strong-motion acceleration record and initial velocity can produce unrealistic results for ground velocity and displacement derived from the acceleration by integration. A new method is proposed for the baseline correction and initial velocity calculation. It is based on linear least-squares fitting of the pre-event portion of velocity derived from the uncorrected acceleration data. Compared with the conventional method,which is based on removing the mean values of the pre-event portions of the acceleration and velocity traces,this method has clearer physical meaning and better stability.
Li HengYao YunshengZheng ShuimingCai YongjianLei Dongning
The spatial and temporal slip distribution of the Lushan earthquake was estimated using teleseismic body wave data. To perform a stable inversion, we applied smoothing constraints and determined their optimal relative weights on the observed data using an optimized Akaike' s Bayesian Information Criterion (ABIC). The inversion generated the source parameters. Strike, dip and slip were 218°, 39° and 100. 8° ,respectively. A seismic moment (M0) was 2. 1 × 10^20 Nm with a moment magnitude (Mw) of 6. 8, and a source duration was approximately 30 second. The rupture propagated along the dip direction, and the maximum slip occurred at the hypocenter. The maximum slip was approximately 2. 1 m, although this earthquake did not cause an apparent surface rupture. The energy was mainly released within 10 second. In addition, the Lushan earthquake was apparently related to the 2008 Wenchuan earthquake. However, the question of whether it was an aftershock of the Wenchuan earthquake requires further study.
Strong-motion site effect was checked for four sites at comparable epicentral distances from the March 11, 2011 Mw9.0 Tohoku earthquake in Japan. The result showed that site condition had a significant impact on peak acceleration, and on maximal amplitude and characteristic period of its response spectrum. Shorter-period seismic waves were amplified mainly in shallower soils, while longer-period waves in deeper soft rocks and soils, where the characteristic periods of response spectra were longer than those on ground surface.
Ruichang-Yangxin earthquake is another moderate earthquake in Yangxin-Jiujiang area since 2005 Jiujiang-Ruichang M5.7 earthquake. In order to more understand the seismic activities in this area, we study the moment tensor solution and the seismogenic structure of the Ruichang-Yangxin earthquake. Precise earthquake relocation shows that the mainshock occurred on the southwestern part of the NE-trending fault and aftershocks are distributed not only along the NE-trending fault but also along its conjugated NW-trending fault. By comprehensive analysis on the earthquake distribution, characteristics of isoseismal curve, focal mechanism, and regional structure characteristics, it is inferred that this earthquake is caused by the NE-trending Tanlu fault. In addition, it has close relationship with the conjugated NW-trending fault as well. Many researches have shown that the junction area is the earthquake-prone area, and should be paid more attention to. And our study also proves this viewpoint.
Lifen Zhang1,2, Guichun Wei and Wulin Liao1 1 Key Laboratory of Earthquake Geodesy, Institute of Seismology, China Earthquake Administration, Wuhan 430071, China 2 Institute of Geophysics, China Earthquake Administration, Beijing 100081, China
In this study, both records of a digital accelerometer and a seismograph at a far-field station for the 2008 Ms8.0 Wenchuan earthquake were analyzed, and a pulsive noise model for acceleration record was found. By comparing with the result of a rotary-table tilt test, we concluded that the noises in the acceleration records were caused by ground tilt as a result of rotational ground motion. We analyzed the key noises that may cause baseline offset, and proposed a baseline-correction scheme for preserving the long-period ground motion in accordance with specific pulse positions. We then applied this correction method to some near-field strongmotion acceleration records. The result shows that this method can obtain near-field ground displacements, including permanent displacements, in agreement with GPS data, and that this method is more stable than other methods.