In-line phase-contrast computed tomography(IL-PC-CT) imaging is a new physical and biochemical imaging method.IL-PC-CT has advantages compared to absorption CT when imaging soft tissues. In practical applications, ring artifacts which will reduce the image quality are commonly encountered in IL-PC-CT, and numerous correction methods exist to either pre-process the sinogram or post-process the reconstructed image. In this study, we develop an IL-PC-CT reconstruction method based on anisotropic total variation(TV) minimization. Using this method, the ring artifacts are corrected during the reconstruction process. This method is compared with two methods: a sinogram preprocessing correction technique based on wavelet-FFT filter and a reconstruction method based on isotropic TV. The correction results show that the proposed method can reduce visible ring artifacts while preserving the liver section details for real liver section synchrotron data.
Diffraction-enhanced imaging (DEI) is a powerful phase-sensitive technique that provides higher spatial resolution and supercontrast of weakly absorbing objects than conventional radiography. It derives contrast from the X-ray absorption, refraction, and ultra-small-angle X-ray scattering (USAXS) properties of an object. The separation of different-contrast contributions from images is an important issue for the potential application of DEI. In this paper, an improved DEI (IDEI) method is proposed based on the Gaussian curve fitting of the rocking curve (RC). Utilizing only three input images, the IDEI method can accurately separate the absorption, refraction, and USAXS contrasts produced by the object. The IDEI method can therefore be viewed as an improvement to the extended DEI (EDEI) method. In contrast, the IDEI method can circumvent the limitations of the EDEI method well since it does not impose a Taylor approximation on the RC. Additionally, analysis of the IDEI model errors is performed to further investigate the factors that lead to the image artifacts, and finally validation studies are conducted using computer simulation and synchrotron experimental data.