Based on dynamic rupture simulations on a planar fault in a homogeneous half-space, we investigated the nucleation processes using the time-weakening friction law. Both the characteristic time and the rupture speed in the nucleation asperity play an important role in determining rupture behaviors on a fault plane following the time-weakening friction law, with which rupture starts from a single point in the nucleation asperity and propagates at a given speed toward the boundary of the nucleation area. Rupture with a small characteristic time or a large rupture speed in the nucleation asperity propagates earlier from the hypocenter. Rupture following the slipweakening friction law requires a smaller radius of nucleation patch to have similar rupture front contours of the time-weakening friction law. Even if the rupture velocity in the nucleation patch of the time-weakening friction law increases to infinity, the peak slip rate in the nucleation asperity is smaller than that of the slip-weakening law. The peak ground velocity distributions of ruptures following the two friction laws are also compared.
In this study, we determined fnax from near- field accelerograms of the Lushan earthquake of April 20, 2013 through spectra analysis. The result shows that the values of fmax derived from five different seismography stations are very close though these stations roughly span about 100 km along the strike. This implies that the cause offmax is mainly the seismic source process rather than the site effect. Moreover, according to the source-cause model of Papageorgiou and Aki (Bull Seism Soc Am 73:693-722, 1983), we infer that the cohesive zone width of the rupture of the Lushan earthquake is about 204 with an uncertainty of 13 m. We also find that there is a significant bulge between 30 and 45 Hz in the amplitude spectra of accel- erograms of stations 51YAL and 51QLY, and we confirm that it is due to seismic waves' reverberation of the sedi- mentary soil layer beneath these stations.