辽宁省教育厅高等学校科学研究项目(L2013408)
- 作品数:3 被引量:3H指数:1
- 相关作者:姜伟杨炳儒毕婷婷张晶李克秋更多>>
- 相关机构:北京科技大学辽宁师范大学大连理工大学更多>>
- 发文基金:辽宁省教育厅高等学校科学研究项目国家自然科学基金更多>>
- 相关领域:自动化与计算机技术更多>>
- 黎曼流形框架上半监督判别分析被引量:1
- 2014年
- 针对传统黎曼流形上判别分析算法仅考虑了带标签数据统计信息,忽略了无标签数据的问题,基于图正则化思想,提出一个新颖的基于黎曼流形框架上半监督判别分析算法,并将其应用于视觉分类任务中.该算法将非奇异协方差矩阵表示为黎曼流形上的点,引入JBLD(Jensen-Bregman LogDet divergence)度量黎曼流形上点与点之间相似性测度.首先将数据点映射到黎曼切空间中,获得数据向量化表示;其次采用有标签数据和无标签数据构建近邻图刻画黎曼切空间局部几何结构,使其作为正则化项添加到费舍尔测地线判别分析目标函数中;最后最小化目标函数获取最优变换矩阵,并在变换黎曼流形中进行分类.在3个视觉分类数据集上实验结果表明,文中算法在分类精度上获得了相当大的提升.
- 姜伟李健芳杨炳儒
- 关键词:黎曼流形协方差矩阵
- 自适应正则化核二维判别分析被引量:1
- 2014年
- 传统的半监督降维技术中,在原特征空间中定义流形正则化项,但其构造无助于接下来的分类任务.针对此问题,文中提出一种自适应正则化核二维判别分析算法.首先每个图像矩阵经奇异值分解为两个正交矩阵与一个对角矩阵的乘积,通过两个核函数将两个正交矩阵列向量从原始非线性空间映射到一个高维特征空间.然后在低维特征空间中定义自适应正则化项,并将其与二维矩阵非线性方法整合于单个目标函数中,通过交替优化技术,在两个核子空间提取判别特征.最后在两个人脸数据集上的实验表明,文中算法在分类精度上获得较大提升.
- 姜伟张晶杨炳儒
- 关键词:核函数降维半监督学习自适应正则化
- 黎曼核局部线性编码被引量:1
- 2015年
- 最近的研究表明:在许多计算机视觉任务中,将对称正定矩阵表示为黎曼流形上的点能够获得更好的识别性能.然而,已有大多数算法仅由切空间局部逼近黎曼流形,不能有效地刻画样本分布.受核方法的启发,提出了一种新的黎曼核局部线性编码方法,并成功地应用于视觉分类问题.首先,借助于最近所提出的黎曼核,把对称正定矩阵映射到再生核希尔伯特空间中,通过局部线性编码理论建立稀疏编码和黎曼字典学习数学模型;其次,结合凸优化方法,给出了黎曼核局部线性编码的字典学习算法;最后,构造一个迭代更新算法优化目标函数,并且利用最近邻分类器完成测试样本的鉴别.在3个视觉分类数据集上的实验结果表明,该算法在分类精度上获得了相当大的提升.
- 姜伟毕婷婷李克秋杨炳儒
- 关键词:黎曼流形对称正定矩阵