We report a pulsed surface-emitted THz-wave parametric oscillator based on two MgO:LiNbO3 crystals pumped by a multi-longitudinal mode Q-switched Nd:YAG laser. Through varying the phase matching angle, the tunable THzwave output from 0.79 THz to 2.84 THz is realized. The maximum THz-wave output was 193.2 n J/pulse at 1.84 THz as the pump power density was 212.5 MW/cm2, corresponding to the energy conversion efficiency of 2.42Х10-6 and the photon conversion efficiency of about 0.037%. When the pump power density changed from 123 MW/cm^2 to 148 MW/cm^2 and 164 MW/cm^2, the maximum output of the THz-wave moved to the high frequency band. We give a reasonable explanation for this phenomenon.
A coherent mid-infrared laser source,which can be tuned from 7.2 μm to 12.2 μm based on the type-Ⅰ phase-matched difference frequency generation(DFG) in an uncoated ZnGeP2(ZGP) crystal,is reported.The two pump waves are from a type-Ⅱ phase-matched dual-wavelength KTP optical parametric oscillator(OPO) of which the signal and idler waves are tuned during 1.85-1.96 μm(extraordinary wave) and 2.5-2.33 μm(ordinary wave),respectively.The maximum energy of the generated mid-infrared laser is 10 μJ at 9.22 μm,corresponding to the peak power of 2.2 kW.