Using non-linear connection of Finsler manifold M, the existence of local coordinates which is normalized at a point x is proved, and the Laplace operator A on 1-form of M is defined by non-linear connection and its curvature tensor. After proving the maximum principle theorem of Hopf-Bochner on M, the Bochner type vanishing theorem of Killing vectors and harmonic 1-form are obtained.
A new Koppelman-Leray-Norguet formula of (p,q) differential forms for a strictly pseudoconvex polyhedron with not necessarily smooth boundary on a Stein manifold is obtained, and an integral representation for the solution of -equation on this domain which does not involve integrals on boundary is given, so one can avoid complex estimates of boundary integrals.
A horizontal (?)-Laplacian is defined on strongly pseudoconvex complex Finsler manifolds, first for functions and then for horizontal differential forms of type (p,q). The principal part of the (?)-Laplacian is computed in local coordinates. As an application, the (?)-Laplacian on strongly Kahler Finsler manifold is obtained explicitly in terms of the horizontal covariant derivatives of the Chern-Finsler conncetion.
ZHONG Chunping & ZHONG Tongde School of Mathematics Science, Xiamen University, Xiamen 361005, China