In this paper, we study the effect of spherical aberrations on the light intensity and the temperature distribution in the focal region in a 250-kHz femtosecond laser irradiated Ag^+-doped borosilicate glass. When a focused beam goes through an interface between air and glass, spherical aberration will result in the separation of the focal point and then cause a clear change of the light intensity distribution along the incident direction. That phenomenon will further influence the longitudinal cross-section temperature distribution in glass. Here we use Ag nanoparticle formation as a marker for establishing temperature distribution and we find that the formation of nanoparticle shows a strong dependence on the temperature field and the detailed precipitation process is also discussed.
Dai YeYu Guang-JunWu Guo-RuiMa Hong-LiangYan Xiao-NaMa Guo-Hong