您的位置: 专家智库 > >

国家自然科学基金(11071049)

作品数:3 被引量:1H指数:1
相关作者:辛林袁俊丽陈莉更多>>
相关机构:福建师范大学南通大学更多>>
发文基金:国家自然科学基金福建省自然科学基金南通市应用研究计划项目更多>>
相关领域:理学更多>>

文献类型

  • 3篇中文期刊文章

领域

  • 3篇理学

主题

  • 1篇引理
  • 1篇椭圆型
  • 1篇椭圆型方程
  • 1篇椭圆型方程边...
  • 1篇回环
  • 1篇函子
  • 1篇伴随对
  • 1篇伴随函子
  • 1篇边值
  • 1篇边值问题
  • 1篇P-LAPL...
  • 1篇存在性
  • 1篇P-LAPL...

机构

  • 2篇福建师范大学
  • 1篇南通大学

作者

  • 2篇辛林
  • 1篇陈莉
  • 1篇袁俊丽

传媒

  • 2篇福建师范大学...
  • 1篇南京师大学报...

年份

  • 2篇2016
  • 1篇2012
3 条 记 录,以下是 1-3
排序方式:
一类p-Laplacian椭圆型方程边值问题的解被引量:1
2012年
本文研究了一类p-Laplacian椭圆型方程-Δpu=a(x)h(u)-b(x)f(u)齐次边值问题和奇性边值问题解的存在性,其中Δpu=div(|▽u|p-2▽u),p>1,h(u)/up-1在(0,+∞)非增,f(u)/up-1在(0,+∞)非减.
陈莉袁俊丽
关键词:P-LAPLACIAN方程存在性
弱正合范畴中蛇引理的推广
2016年
总结了正合范畴的概念,介绍了弱正合范畴以及弱正合范畴中蛇引理的知识,并对之进行了推广从而得到证明.
熊超根吴清凤辛林
拉回环上导出范畴的伴随函子
2016年
设R_1,R_2,R'是3个有单位元的结合环,环R是环同态j_1:R_1→R'和j_2:R_2→R'的拉回环.首先引入了左R_1-模复形范畴与左R_2-模复形范畴的积范畴的一个子范畴C(T),利用拉回函子方法构造了一个加法函子P:C(T)→C(R-Mod),以及S:C(R-Mod)→C(T),证明了(S,P)是一对伴随对函子.其次,在此基础上,研究了相应的左导出范畴,也得到相应左导出范畴之间的伴随对函子.最后通过一个例子说明在同伦范畴上没有相应的伴随对函子.
吴清凤辛林
关键词:伴随对
共1页<1>
聚类工具0