Wavelet decomposition has been applied in palmprint recognition successfully. However, only the low frequency sub-band was used for further feature extraction, while the high frequency sub-bands were consid2 ered to be unsuitable for palmprint recognition due to their sensitivity to noise and shape distortion. In this pa- per, we firstly investigate the performances of all the sub-bands by using principal component analysis (PCA) on the BJTU and PolyU palmprint databases, and then use mean filtering to enhance the robustness of the high frequency sub-bands. We find that the preprocessed high frequency sub-bands not only can be used for palm- print recognition but also contain complementary information with the low frequency sub-band. The experimental results show that the performances of the horizontal and vertical high frequency sub-bands can be promoted up to a competitive level, and the fusion scheme, which combines the matching scores of high frequency sub-bands with that of low frequency sub-band, is superior to the conventional recognition methods.