Biodiesel industrial production based on a solid base catalyst in a fixed-bed was simulated. The lab and bench scale experiments were carded out effectively, in which the kinetic model is established and it can describe the transesterification reaction well. The Antoine equation of biodiesel is regressed with the vapor-liquid data cited of literature. The non-random two liquid (NRTL) model is applied to describe the system of fatty acid methyl ester (FAME), methanol and glycerol and parameters are obtained. The Ternary phase map is obtained from Aspen Plus via the liquid-liquid equilibrium (LLE) data. In order to describe the production in a fixed-bed performs in industrial scale after being magnified 1 000 times, the Aspen Plus simulation is employed, where two flowsheets are simulated to predict material and energy consumption. The simulation results prove that at least 350. 42 kW energy consumption can be reduced per hour to produce per ton biodiesel compared with data reported in previous references.
以USY为载体制备了一系列不同Cu和MgO负载量的酸碱双功能催化剂Cu-MgO/USY用于甘油氢解制丙二醇反应,并采用X射线粉末衍射、透射电镜、傅里叶红外光谱、NH3程序升温脱附等手段对该催化剂进行了表征.结果表明,负载后的USY载体其Y沸石特征峰保持完整,且MgO的加入提高了Cu在载体表面的分散度.在200 oC,3.5 MPa H2下反应10 h以及6%催化剂0.2Cu-MgO/USY(0.2 g Cu与1.0 g MgO负载于1.0 g USY上面)用量的条件下,甘油转化率达到83.6%,1,2-丙二醇及1,3-丙二醇的选择性分别为40%和19.4%.