随着智能移动设备的发展和普及,空间定位技术不断成熟,基于位置的社交网络(Location-based Social Network,LBSN)得到了广泛应用。大量用户在LBSN签到,以及针对签到进行的评论不仅记录了用户的时空行为轨迹,也为研究用户行为模式和特征偏好提供了巨大的机会。提出一种基于LBSN签到数据的商业店铺选址推荐系统,首先分析用户在LBSN上的签到时间、签到地点、签到商铺类型3个方面的特征;然后提出4个影响商铺选址的因素:多样性、竞争性、相关性和客流性;最后实现商业选址推荐系统,并根据选址因素生成最优候选。并以此为基础进行相关实验来验证推荐结果,结果符合相关预期。
为了研究微博用户表达情感的特性,从个人化的情感表达和对社会性事件的态度反映两类文本出发,分别对个人情感变化以及热点事件中的用户情绪进行分析,设计并实现了微博情感可视化系统(sentiment visualization system for microblog,SVSM)。个人化情感研究记录用户在时间轴上的情绪波动,并且从性别及地域属性上分析个人情感差异;热点事件情感研究监测用户情绪的群体表达,从时间、空间、热词、用户属性、事件属性以及传播特性等角度进行特性分析。
随着社交网络服务的快速发展及增长,理解网络用户之间潜在的影响力的传播过程,能够帮助用户更好地理解网络结构的动态演化,以及不同的信息对于人与人之间社会关系的影响作用.现有的影响力传播相关的研究工作主要集中在给定静态社交网络结构,分析用户之间的影响力传播,找出最具有影响力的用户子集.然而大部分已有工作都忽略了社交网络中的内容信息,即用户之间的影响力作用是与用户产生内容紧密相关的.该文提出了一种融合内容信息和社交网络动态时间特性的潜在影响力传播模型InfoIBP(Influence propagation on Indian Buffet Process).网络中有影响力的用户被看作是一种潜在的特征,可通过不同采样算法和数值逼近求解出来.而对于网络动态时间特性,借助于隐马尔可夫模型来建模不同时间步上的影响力传播过程.在数据集DBLP和Digg上的一系列链接预测、偏好预测和运行时间评测等实验,证明了所提InfoIBP模型能够更准确地建模潜在的影响力传播过程,更有效地挖掘出社交网络中的有影响力用户及更全面地描述网络的动态时间特性,并能对未来的观测数据做出相对精准的预测.