您的位置: 专家智库
>
资助详情>
浙江省自然科学基金(LQ13A010005)
浙江省自然科学基金(LQ13A010005)
- 作品数:5 被引量:9H指数:2
- 相关作者:吕小芬胡璋剑周立芳郑霞曹燕更多>>
- 相关机构:湖州师范学院更多>>
- 发文基金:浙江省自然科学基金国家自然科学基金更多>>
- 相关领域:理学更多>>
- 计算L^p空间上Berezin变换范数的一种新方法
- 2013年
- Berezin变换在研究Bergman空间上的算子理论中发挥了重要作用.利用超几何函数和Schur检验,给出了开单位圆盘上的Berezin变换的Lp(1
- 景彩霞周立芳
- 关键词:超几何函数BEREZIN变换算子范数
- Fock空间及其相关算子被引量:5
- 2015年
- 本文是关于Fock空间及其上相关算子研究的综述,包括Fock空间的定义、Fock空间的Bergman核估计和Carleson测度及其范数等价刻画等基本内容,并且展示了对Fock空间上相关线性算子(如复合算子、广义Ces`aro算子、Toeplitz算子和Hankel算子及某些线性算子所生成的闭代数)若干特性研究的最新进展,这些特性包括有界性、紧性、Schatten类和Schatten-Herz类等.
- 胡璋剑吕小芬
- 关键词:FOCK空间BERGMAN核CARLESON测度TOEPLITZ算子HANKEL算子
- 复单位球上加权Berezin变换的L^p范数
- 2014年
- 借助超几何函数的性质,结合Schur检验给出了复单位球上加权Berezin变换的Lp范数,推广了Liu和Zhou的关于复单位球上Berezin变换的Lp范数的结果.
- 陈蓉珍郑霞周立芳
- 关键词:超几何函数算子范数
- 加权Fock空间上的Hankel算子被引量:4
- 2016年
- 给定1≤p〈∞,本文研究了Hankel算子Hg在加权Fock空间Fφ^p上的有界性和紧性特征,其中φ表示C上不处处为零且?φdA是双倍测度的次调和函数。同时,对2≤p〈∞,本文还讨论了可分Hilbert空间Fφ^2上的Schatten-p类Hankel算子。
- 胡璋剑吕小芬
- 关键词:FOCK空间HANKEL算子
- 若干全纯函数空间上的一类积分算子
- 2014年
- 给定g∈H(D),我们刻画了H1,∞空间到混合模空间以及Bloch型空间(或小Bloch型空间)上一类积分算子Lg的有界性和紧性.此处Lgf(z)=∫0zf′(t)g(t)dt.
- 曹燕吕小芬
- 关键词:积分算子混合模空间BLOCH型空间