The prediction skill of Arctic Oscillation (AO) in the decadal experiments with the Beijing Climate Center Climate System Model version 1.1 (BCC_CSM1.1) is assessed. As compared with the observations and historical experiments, the contribution of initialization for climate model to predict the seasonal scale AO and its interannual variations is estimated. Results show that the spatial correlation coefficient of AO mode simulated by the decadal experiment is higher than that in the historical experiment. The two groups of experiments reasonably reproduce the characteristics that AO indices are the strongest in winter and the weakest in summer. Compared with historical experiments, the correlation coefficient of the monthly and winter AO indices are higher in the decadal experiments. In particular, the correlation coefficient of monthly AO index between decadal hindcast and observation reached 0.1 significant level. Furthermore, the periodicity of the monthly and spring AO indices are achieved only in the decadal experiments. Therefore, the initial state of model is initialized by using sea temperature data may help to improve the prediction skill of AO in the decadal prediction experiments to some extent.
WU Li-QuanLI Qing-QuanDING Yi-HuiWANG Li-JuanXIN Xiao-GeWEI Min
The Argo(Array for Real-time Geostrophic Oceanography) data from 1998 to 2003 were used in the Beijing Climate Center-Global Ocean Data Assimilation System(BCC-GODAS). The results show that the utilization of Argo global ocean data in BCC-GODAS brings about remarkable improvements in assimilation effects. The assimilated sea surface temperature(SST) of BCC-GODAS can well represent the climatological states of observational data. Comparison experiments based on a global coupled atmosphere-ocean general circulation model(AOCGM) were conducted for exploring the roles of ocean data assimilation system with or without Argo data in improving the climate predictability of rainfall in boreal summer. Firstly, the global ocean data assimilation system BCC-GODAS was used to obtain ocean assimilation data under the conditions with or without Argo data. Then, the global coupled atmosphere-ocean general circulation model(AOCGM) was utilized to do hindcast experiments with the two sets of the assimilation data as initial oceanic fields. The simulated results demonstrate that the seasonal predictability of rainfall in boreal summer, particularly in China, increases greatly when initial oceanic conditions with Argo data are utilized. The distribution of summer rainfall in China hindcast by the AOGCM under the condition when Argo data are used is more in accordance with observation than that when no Agro data are used. The area of positive correlation between hindcast and observation enlarges and the hindcast skill of rainfall over China in summer improves significantly when Argo data are used.