Hybridization of peptide nucleic acids probe containing azobenzene (NH2-TNT4, N-PNAs) with DNA was performed by covalently immobilizing of NH2-TNT4 in sequence on the 3-mercaptopropionic acid self-assembled monolayer modified gold electrode with the helps of N-(3-dimethylaminopropy1)-N'-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS), and the hybrid was coded as N-PNAs/DNA. Using [Fe(CN)6]4-/3- (1:1) as the electrochemical indicator, the electrochemical properties of the N-PNAs self-assembled monolayer (N-PNAs-SAMs) and N-PNAs/DNA hybridization system under the conditions of before and after UV light irradiation were characterized with cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectra (EIS). Results showed that the redox currents decreased with the increase of irradiation time, suggesting that the ability of the charge transfer on the electrode surface was weakened and the conformation of hybrid system had been changed, and the control of PNAs/DNA hybridization could be realized by UV light irradiation.
LIU ShengCHEN MiaoLI JinDuZHANG HaoBoWANG JinQingYANG ShengRong
The LiFePO4 nanotubes were successfully fabricated by a sol-gel method with porous anodic aluminum oxide as the template. Transmission electron microscopy and scanning electron microscopy showed that the synthesized LiFeP04 nanotubes were monodispersed and parallel to one another. Selected area electron diffraction pattern, X-ray diffraction and X-ray photoelectron spectroscopy investigations jointly demonstrated that the synthesized LiFePO4 nanotubes were pure olivine structure. This approach offered a potentially way for fabricating ordered LiFePO4 nanotubes at room temperature and ambient conditions, which might be expected to find promising application as a new cathode material in lithium ion battery,