The DNA gyrase of Escherichia coli plays an essential role in the life of this microorganism.It is unique among all topoisomerases because of its ability to introduce negative supercoils into DNA.This study investigated the single molecular interaction of E.coli gyrase with DNA using magnetic tweezers.The results showed that,in the absence of ATP,gyrase weakly binds the G and T segments.The stretched force of 0.7 pN can gradually destroy the binding,whereas that of 5.9 pN directly destroys it.Addition of high concentrations of norfloxacin enhances gyrase binding to both segments,making them adapt to 5.9 pN.DNA gyrase reduces the plectonemic dimension,which was determined by the bacterial enzyme and not by the pull force.Moreover,it has different affinities for positive supercoils,which it prefers,and negative supercoils.The time distribution of the dissociation of gyrase from DNA has a double-exponential form.We herein propose a model to explain this distribution and compare the results with those of other models.
RecQ family helicases are critical for maintaining genomic integrity. Many RecQ family helicases not only unwind duplex, and other more complicated DNA structures, but also possess, interestingly, DNA annealing (strand pairing) activity. Here, we systematically investigated the DNA annealing properties of RECQ5β by measuring DNA annealing kinetics, equilibrium DNA binding, and kinetics of dissociation from ssDNA. RECQ5β catalyzed DNA annealing most efficiently when the enzyme molecules covered approximately 40%-50% of the DNA strand, in the absence or presence of different nucleotide cofactors (AMPPNP, ATPγS, or ADP) under our buffer conditions. A comparative study with RECQ5β1-662 confirmed that the C-terminal region of RECQ5β was essential for its high DNA annealing activity. These results contribute to our understanding of the mechanism of DNA annealing catalyzed by RecQ family helicases.
The effect of the median selective solution on the lamellar,spherical and gyroid structures is studied. The self-consistent field equations of the diblock copolymer solution are solved by using the reciprocal space method. It is shown that the spherical and gyroid phases have the lowest free energy in the certain range of the solution concentration. Furthermore,the phase diagram of the ordered structures in the diblock copolymer solution with the median selective solvent is calculated,which is consistent with the experimental results.