We have presented a theoretical calculation of the differential cross section (DCS) for the electron Ra- man scattering (ERS) process associated with the interface optical (IO) and surface optical (SO) phonons in mul- tilayer coaxial cylindrical AlxGal-xAs/GaAs quantum cables (QC). We consider the Frohlich electron-phonon interaction in the framework of the dielectric continuum approach. The selection rules for the processes are stud- ied. Singularities are found to be sensitively size-dependent and by varying the size of the QC, it is possible to control the frequency shift in the Raman spectra. A discussion of the phonon behavior for the QC with different size is presented. The numerical results are also compared with those of experiments.