There are few relevant researches on coils by tempering,and the variations of microstructure and properties of steel coil during the tempering process also remain unclear.By using thermo-mechanical control process(TMCP)technology,Mn-Ti typical HSLA steel coils with yield strength of 920 MPa are produced on the 2250 hot rolling production line.Then,the samples are taken from the coils and tempered at the temperatures of 220℃,350℃,and 620℃respectively.After tempering the strength,ductility and toughness of samples are tested,and meanwhile microstructures are investigated.Precipitates initially emerge inside the ferrite laths and the density of the dislocation drops.Then,the lath-shaped ferrites begin to gather,and the retained austenite films start to decompose.Finally,the retained austenite films are completely decomposed into coarse and short rod-shape precipitates composed of C and Ti compounds.The yield strength increases with increasing tempering temperature due to the pinning effect of the precipitates,and the dislocation density decreases.The yield strength is highest when the steel is tempered at 220℃because of pinning of the precipitates to dislocations.The total elongation increases in all samples because of the development of ferrites during tempering.The tensile strength and impact absorbed energy decline because the effect of impeding crack propagation weakens as the retained austenite films completely decompose and the precipitates coarsen.This paper clarifies the influence of different tempering temperatures on phase transformation characteristics and process of Mn-Ti typical multiphase steels,as well as its resulting performance variation rules.
LI DazhaoLI XiaonanCUI TianxieLI JianminWANG YutianFU Peimao
Analysis ofZ phase precipitation in 2205 duplex stainless steel aged at 700 and 750 ~C has been investigated systematically. The experimental results showed that X phase forms prior to the precipitation of δ phase and disappears once tr phase starts to precipitate. This phenomenon indicates that a phase nucleated and consumed the Z phase. The δ phase nucleated mairdy at ferrite/austenite interface and grew inwards into the ferrite phase. The morphology of a phase reveals a coral-like structure at the temperature of 700 ℃ for 120 min followed by quenching in water. The decomposition of ferrite occurs via the following eutectoid reaction: F---*o'+y2. The selected area diffraction pattern of zone axes is[3 1 3-][3 1 3], indicating a characteristic orientation relationship between X phase and δ-ferrite.
TWIP steels with 70% cold-rolled reduction were heated at 500, 600, 700, 800, 900, 1000, and 1100 ℃. Then, the properties before and after heating were examined through tensile and hardness experiments. The microstructures were also analyzed by optical microscopy and transmission electron microscopy. The relationship between the properties and microstructure was examined as well. Finally, the evolution process of cold-rolled microstructures during heating was discussed in detail. Moreover, some conclusions can be drawn, and the heating evolution characteristics are described.
Microstructural characterization in fusion zone of the laser continuous heat treatment welded joint was in vestigated. The results showed that the martensite-like microstructure is the face centered cubic (FCC) crystal structure so that it can be identified as the secondary austenite. The dislocation is observed inside and outside the seconda ry austenite, whereas inclusion is not found in the vicinity of the secondary austenite. In the fusion zone, there is a kind of carbide precipitate which is identified as M23 C6 by the means of transmission electron microscope (TEM). The carbide precipitate is a representative mode of transformation, which can be generated by the eutectoid reaction. Furthermore, the formation mechanisms of the secondary austenite and chromium carbide are analyzed.
He-ping LIUBin LIUDa-zhao LIHu-er SUNFeng-er SUNXue-jun JIN