What is the relationship between the topological connections among enzymes and their functions during metabolic network evolution? Does this relationship show similarity among closely related or-ganisms? Here we investigated the relationship between enzyme connectivity and functions in meta-bolic networks of chloroplast and its endosymbiotic ancestor, cyanobacteria (Synechococcus sp. WH8102). Also several other species, including E. coli, Arabidopsis thaliana and Cyanidioschyzon merolae, were used for the comparison. We found that the average connectivity among different func-tional pathways and enzyme classifications (EC) was different in all the species examined. However, the average connectivity of enzymes in the same functional classification was quite similar between chloroplast and one representative of cyanobacteria, syw. In addition, the enzymes in the highly con-served modules between chloroplast and syw, such as amino acid metabolism, were highly connected compared with other modules. We also discovered that the isozymes of chloroplast and syw often had higher connectivity, corresponded to primary metabolism and also existed in conserved module. In conclusion, despite the drastic re-organization of metabolism in chloroplast during endosymbiosis, the relationship between network topology and functions is very similar between chloroplast and its pre-cursor cyanobacteria, which demonstrates that the relationship may be used as an indicator of the closeness in evolution.
The metabolic network has become a hot topic in the area of system biology and flux-based analysis plays a very important role in understanding the characteristics of organism metabolic networks. We review mainly the static methods for analyzing metabolic networks such as flux balance analysis (FBA), minimization of metabolic adjustment (MOMA), regulatory on / off minimization (ROOM), and dynamic flux balance analysis with linear quadratic regulator (DFBA-LQR). Then several kinds of commonly used software for flux analysis are introduced briefly and compared with each other. Finally, we highlight the applications of metabolic network flux analysis, especially its usage combined with other biological characteristics and its usage for drug design. The idea of combining the analysis of metabolic networks and other biochemical data has been gradually promoted and used in several aspects such as the combination of metabolic flux and the regulation of gene expression, the influence of protein evolution caused by metabolic flux, the relationship between metabolic flux and the topological characteristics, the optimization of metabolic engineering. More comprehensive and accurate properties of metabolic networks will be obtained by integrating metabolic flux analysis, network topological characteristics and dynamic modeling.