The coherent control of field-free molecular orientation of CO with combined femtosecond single- and dual-color laser pulses has been theoretically studied. The effect of the delay time between the femtosecond single- and dual-color laser pulses is discussed, and the physical mechanism of the enhancement of molecular orientation with pre-alignment of the molecule is investigated. It is found that the basic mechanism is based on the creation of a rotational wave packet by the femtosecond single-color laser pulse. Furthermore, we investigate the interference between multiple rotational excitation pathways following pre-alignment with femtosecond single-color laser pulse. It is shown that such interference can lead to an enhancement of the orientation of CO molecule by a factor of 1.6.