Let G be a finite group. Fix a prime divisor p of IGI and a Sylow p-subgroup P of G, let d be the smallest generator number of P and Ma(P) denote a family of maximal subgroups P1, P2 , Pd of P satisfying ∩^di=1 Pi = Ф(P), the Frattini subgroup of P. In this paper, we shall investigate the influence of s-conditional permutability of the members of some fixed .Md(P) on the structure of finite groups. Some new results are obtained and some known results are generalized.
In this paper the influence of s-quasinormally embedded and c-supplemented subgroups on the p-nilpotency of finite groups is investigate and some recent results are generalized.