The magnetic properties and defect types of virgin and N-doped TiO2 single crystals are probed by superconducting quantum interference device (SQUID), X-ray photoelectron spectroscopy (XPS), and positron annihilation analysis (PAS). Upon N doping, a twofold enhancement of the saturation magnetization is observed. Apparently, this enhancement is not related to an increase in oxygen vacancy, rather to unpaired 3d electrons in Ti3+, arising from titanium vacancies and the replacement of O with N atoms in the futile structure. The production of titanium vacancies can enhance the room temperature ferromagnetism (RTFM), and substitution of O with N is the onset of ferromagnetism by inducing relatively strong ferromagnetic ordering.
Room-temperature ferromagnetism has been experimentally observed in annealed rutile TiO2 single crystals when a magnetic field is applied parallel to the sample plane.By combining X-ray absorption near the edge structure spectrum and positron annihilation lifetime spectroscopy,Ti^3+-V O defect complexes(or clusters) have been identified in annealed crystals at a high vacuum.We elucidate that the unpaired 3d electrons in Ti^3+ ions provide the observed room-temperature ferromagnetism.In addition,excess oxygen ions in the TiO2 lattice could induce a number of Ti vacancies which obviously increase magnetic moments.