Grain shape and size are two key factors that determine rice yield and quality. In the present study, a rice triangular hull mutant (tri1) was obtained from the progeny of japonica rice variety Taipei 309 treated with 60Co γ-rays. Compared to the wild type, the tri1 mutant presents a triangular hull, and exhibits an increase in grain thickness and protein content, but with a slight decrease in plant height and grain weight. Genetic analysis indicated that the mutant phenotype was controlled by a recessive nuclear gene which is stably inherited. Using a map-based cloning strategy, we fine-mapped tri1 to a 47-kb region between the molecular markers CHR0122 and CHR0127 on the long arm of chromosome 1, and showed that it co-segregates with the molecular marker CHR0119. According to the rice genome sequence annotation there are six predicated genes within the mapped region. Sequencing analysis of the mutant and the wild type indicated that there was a deletion of an A nucleotide in exon 3 of the OsMADS32 gene, which could result in a downstream frameshift mutation and premature termination of the predicted polypeptide. Both semi-quantitative and real-time RT-PCR analyses showed that this gene expressed highly in young inflorescences, while expressed at very low levels in other tissues. These results implied that the OsMADS32 gene could be a candidate of TRI1. Taken together, the results of this study lay the foundation for further investigation into the molecular mechanisms regulating rice caryopsis development.
The rapid visco analyser (RVA) profile is an important factor for evaluation of the cooking and eating quality of rice. To improve rice quality, the identification of new quantitative trait loci (QTLs) for RVA profiling is of great significance. We used a japonica rice cultivar Nipponbare as the recipient and indica rice 9311 as the donor to develop a population containing 38 chromosome segment substitution lines (CSSLs) genotyped by a high-throughput re-sequencing strategy. In this study, the population and the parent lines, which contained similar apparent amylose contents, were used to map the QTLs of RVA properties including peak paste viscosity (PKV), hot paste viscosity (HPV), cool paste viscosity (CPV), breakdown viscosity (BKV), setback viscosity (SBV), consistency viscosity (CSV), peak time (PET) and pasting temperature (PAT). QTL analysis was carried out using one-way analysis of variance and Dunnett's test, and stable QTLs were identified over two years and under two environments. We identified 10 stable QTLs: qPKV2-1, qSBV2-1; qPKV5-1, qHPV5-1, qCPV5-1; qPKV7-1, qHPV7-1, qCPV7-1, qSBV7-1; and qPKV8-1 on chromosomes 2, 5, 7 and 8, respectively, with contributions ranging from -95.6% to 47.1%. Besides, there was pleiotropy in the QTLs on chromosomes 2, 5 and 7.
Chromosome segment substitution lines(CSSLs) are useful for the precise mapping of quantitative trait loci(QTLs) and dissection of the genetic basis of complex traits.In this study,two whole-genome sequenced rice cultivars,the japonica Nipponbare and indica 9311 were used as recipient and donor,respectively.A population with 57 CSSLs was developed after crossing and back-crossing assisted by molecular markers, and genotypes were identified using a high-throughput resequencing strategy.Detailed graphical genotypes of 38 lines were constructed based on resequencing data.These CSSLs had a total of 95 substituted segments derived from indica 9311,with an average of about 2.5 segments per CSSL and eight segments per chromosome,and covered about 87.4%of the rice whole genome.A multiple linear regression QTL analysis mapped four QTLs for 1000-grain weight.The largest-effect QTL was located in a region on chromosome 5 that contained a cloned major QTL GW5/qSW5 for grain size in rice.These CSSLs with a background of Nipponbare may provide powerful tools for future whole-genome