您的位置: 专家智库 > >

国家自然科学基金(s20621401)

作品数:2 被引量:4H指数:1
发文基金:国家自然科学基金国家重点基础研究发展计划更多>>
相关领域:理学化学工程更多>>

文献类型

  • 2篇中文期刊文章

领域

  • 1篇化学工程
  • 1篇理学

主题

  • 1篇TH
  • 1篇USING
  • 1篇CRYSTA...
  • 1篇DIFFER...
  • 1篇EARLY_...
  • 1篇IN_FIL...
  • 1篇LOCK
  • 1篇POLYST...

传媒

  • 2篇Chines...

年份

  • 1篇2013
  • 1篇2011
2 条 记 录,以下是 1-2
排序方式:
EFFECT OF MOLECULAR WEIGHT AND FILM THICKNESS ON THE CRYSTALLIZATION AND MICROPHASE SEPARATION IN POLYSTYRENE-BLOCK-POLY(L-LACTIC ACID) THIN FILMS AT THE EARLY STAGE
2011年
We investigated the effects of molecular weight and film thickness on the crystallization and microphase separation in semicrystalline block copolymer polystyrene-block-poly(L-lactic acid) (PS-b-PLLA) thin films, at the early stage of film evolution (when Tg 〈 T 〈 TODT) by in situ hot stage atomic force microscopy. For PS-b-PLLA 1 copolymer which had lower molecular weight and higher PLLA fraction, diffusion-controlled break-out crystallization started easily. For PS-b-PLLA 2 with higher molecular weight, crystallization in nanometer scales occurs in local area. After melting of the two copolymer films, islands were observed at the film surface: PS-b-PLLA 1 film was in a disordered phase mixed state while PS-b-PLLA 2 film formed phase-separated lamellar structure paralleling to the substrate. Crystallization-melting and van der Waals forces drove the island formation in PS-b-PLLA 1 film. Film thickness affected the crystallization rate. Crystals grew very slowly in much thinner film of PS-b-PLLA 1 and remained almost unchanged at long time annealing. The incompatibility between PS and PLLA blocks drove the film fluctuation which subsequently evolved into spinodal-like morphology.
于新红
关键词:CRYSTALLIZATION
CONTROLLING THE SURFACE COMPOSITION OF PCBM IN P3HT/PCBM BLEND FILMS BY USING MIXED SOLVENTS WITH DIFFERENT EVAPORATION RATES被引量:4
2013年
The surface composition of poly(3-hexylthiophene-2,5-diyl) and fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (P3HT/PCBM) blend films could be changed by controlling the film formation process via using mixed solvents with different evaporation rates. The second solvent, with a higher boiling point than that of the first solvent and much better solubility for PCBM than P3HT, is chosen to mix with the first solvent with a lower boiling point and good solubility for both PCBM and P3HT. The slow evaporation rate of the second solvent provides enough time for PCBM to diffuse upwards during the solvent evaporation. Thus, the weight ratio of PCBM and P3HT (mpcBM/mp3HT) at surface of the blend films was varied from ca. 0.1 to ca. 0.72, i.e., it increases about seven times by changing from single solvent to mixed solvents. Meanwhile, the mixed solvents were in favor to form P3HT naonofiber network and enhance phase separation of P3HT/PCBM blend films. As a result, the power conversion efficiency of the device from mixed solvents with slow evaporation process was about 1.5 times of the one from single solvents.
Yue SunJian-gang LiuYan Ding韩艳春
共1页<1>
聚类工具0