For a single cylinder engine, the total unbalanced inertial forces occur in the engine block, which results in engine’s vibration and deteriorated noise. In order to eliminate the unbalanced forces, counterweight and primary balance shaft should be attached to the cylinder block so that engine durability and ride comfortability may be further improved. Traditionally one third of connecting rod assembly’s mass is treated as reciprocating mass, and two thirds as rotating mass when designing balance mechanism. In this paper, a new method based on the multibody dynamics simulation is introduced to separate the reciprocating mass and rotating mass of connecting rod assembly. The model consists of crankshaft, connecting rod, piston and the simulation is performed subsequently. According to the simulation results of the main bearing loads, the reciprocating mass and rotating mass are separated. Finally a new balance mechanism is designed and simulation results show that it completely balances inertial forces to improve the engine’s noise vibration and harshness performance.
Aiming at the problems in current cam profile optimization processes, such as simple dynamics models, limited geometric accuracy and low design automatization level, a new dynamic optimization mode is put forward. Based on the parameterization modeling technique of MSC. ADAMS platform, the different steps in current mode are reorganized, thus obtaining an upgraded mode called the "parameterized-prototype-based cam profile dynamic optimization mode". A parameterized prototype(PP) of valve mechanism is constructed in the course of dynamic optimization for cam profiles. Practically, by utilizing PP and considering the flexibility of the parts in valve mechanism, geometric accuracy and design automatization are improved.