采用硫酸水解超细纤维合成革基布,暴露基布的活性基团;以鞣剂F-90作为交联剂,将胶原蛋白接枝到超细纤维合成革基布上,以期改善基布的卫生性能。结果表明:最佳改性工艺条件为:胶原蛋白用量15%、F-90用量6%、改性温度45℃、时间4 h、体系p H 7.0;该条件下处理后,基布的羧基含量增加188.82%,氨基含量增加124.19%,透水汽性提高65.15%,吸水性提高58.04%,且其抗张强度、断裂伸长率和撕裂强度均有所提高。采用FI-IR、XPS、SEM和接触角分别对改性前后基布进行表征,结果显示:胶原蛋白能够成功交联改性到基布上,改性后基布表面的活性基团增加,纤维松散程度增大,润湿性提高。
A new cationic conjugated polymer was designed and synthesized to optically discriminate coenzyme A(CoA) among structurally similar biomolecules, ATP, ADP and AMP. The analyte-induced aggregation of the conjugated polymer by π-stacking between their main chains leads to the fluorescence quenching. Except for the similar adenosine and phosphate moieties as those in ATP, ADP and AMP, the CoA molecule also includes a long side chain that is favorable for hydrophobic interactions. Thus, CoA can form a complex with oppositely charged conjugated polymer by cooperative electrostatic and hydrophobic interactions, whereas ATP, ADP and AMP form the complexes with oppositely charged conjugated polymer mainly by electrostatic interactions. The increase of the ion strength of the assay solution screens the electrostatic attractions, and the remaining hydrophobic interactions dominate the formation of PFP-PTF/CoA complex. At this case, the quenching efficiency of PFP-PTF by CoA is much higher than that by ATP, ADP and AMP, which impart the PFP-PTF to sense CoA from these interferencing species.