The lutetium tantalate compounds obtained from Lu2O3–Ta2O5 with a molar ratio of 0.515 : 0.485 were studied by Raman scattering and x-ray diffraction. The results of the room temperature Raman scattering indicate that the sample has a phase transition between 1830℃ and 1872℃, the polycrystalline is a mixture of M-LuTaO4 and Lu3TaO7(F m3m)when it is prepared at 1830℃, and a mixture of M-LuTaO4(B112/b) and Lu3 Ta O7(Fm3^-m) when it is prepared at above 1872℃. The sample melts at a temperature of 2050℃. The phase transition of the sample prepared at 2050℃ was also investigated by the high-temperature Raman spectra, and the result indicates that no phase transition occurs between room temperature and 1400℃, which is consistent with the results from the x-ray diffraction.
The Judd-Ofelt theoretic transition intensity parameters A(tp)k of luminescence of rare-earth ions in solids are important for the quantitative analysis of luminescence.It is very difficult to determine them with emission or absorption spectra for a long time.A "full profile fitting" method to obtain A(tp)k in solids with its emission spectrum is proposed,in which the contribution of a radiative transition to the emission spectrum is expressed as the product of transition probability,line profile function,instrument measurement constant and transition center frequency or wavelength,and the whole experimental emission spectrum is the sum of all transitions.In this way,the emission spectrum is expressed as a function with the independent variables intensity parameters A(tp)k,full width at half maximum(FWHM) of profile functions,instrument measurement constant,wavelength,and the Huang-Rhys factor S if the lattice vibronic peaks in the emission spectrum should be considered.The ratios of the experimental to the calculated energy lifetimes are incorporated into the fitting function to remove the arbitrariness during fitting A(tp)k and other parameters.Employing this method obviates measurement of the absolute emission spectrum intensity.It also eliminates dependence upon the number of emission transition peaks.Every experiment point in emission spectra,which usually have at least hundreds of data points,is the function with variables A(tp)k and other parameters,so it is usually viable to determine A(tp)k and other parameters using a large number of experimental values.We applied this method to determine twenty-five A(tp)k of Yb(3+) in GdTaO4.The calculated and experiment energy lifetimes,experimental and calculated emission spectrum are very consistent,indicating that it is viable to obtain the transition intensity parameters of rare-earth ions in solids by a full profile fitting to the ions' emission spectrum.The calculated emission cross sections of Yb(3+):GdTaO4 a
A Nd-doped GdNbO4 single crystals have been grown successfully using the Czochralski technique. The chemical etching method was employed to study the defects in the structural morphology of Nd:GdNbO4 crystal with phosphoric acid etchant. Mechanical proper- ties (such as hardness, yield strength, fracture toughness, and brittle index) of the as-grown crystal were system- atically estimated on the basis of the Vickers hardness test for the first time. The transmission spectrum of Nd: GdNbO4 was measured in the wavelength range of 320- 2400 nm at room temperature, and the absorption peaks were assigned. Results hold great significance for further research on Nd:GdNbO4.
Shoujun DINGQingli ZHANGWenpeng LIUJianqiao LUODunlu SUN
Profile function properties with different variables are discussed, the formulae of stimulated absorption, spontaneous and stimulated emission, absorption and emission coefficients, and cross sections are deduced, and some confusing issues are clarified.