The energy of the interaction between the matrix and the inclusions in shape memory alloy (SMA) re- inforced composite is one of the most important and complicated parts in thermodynamic constitutive theory. In this paper, the interaction energy is derived based on the classical theory of micromechanics and the thermodynamic theory. The SMA composite is treated as three phases, namely the austenitic phase, the martensite phase and the matrix phase. The interaction among the three phases is analyzed in a way close to the fact. The present expression is used to calculate the interaction energy of a typical SMA composite with attentions paid to understand of the effects of the matrix material, the fiber ge- ometry, and the fiber/matrix volume ratio. It is shown that the method developed in this paper is credible compared with the references. Some useful conclusions are obtained.
ZHU YuPing1,2, DUI GuanSuo1 & DUO Liu3 1 Institute of Mechanics, Beijing Jiaotong University, Beijing 100044, China
A large field-induced strain of magnetic shape memory alloy is developed by the martensite variant reorientation. It is widely recognized that the martensite reorientation in a magnetic shape memory alloy (MSMA) can develop if the magnetic field is large enough. However, it has been shown in the literature that the magnetization rotation may block variant reorientation via energy minimization approach. In this paper, based on a micromechanicat model associated with the thermodynamic theory, authors show that there are some limits for the martensite reorientation, which is hindered by the magnetization rotation. Some useful conclusions are obtained.