To accurately predict the occurrence of ductile fracture in metal forming processes, the Gurson-Tvergaard (GT) porous material model with optimized adjustment parameters is adopted to analyze the macroscopic stressstrain response, and a practical void nucleation law is proposed with a few material constants for engineering applications. Mechanical and metallographic analyses of uniaxial tension, torsion and upsetting experiments are performed. According to the character of the metal forming processes, the basic mechanisms of ductile fracture are divided into two modes: tension-type mode and shear-type mode. A unified fracture criterion is proposed for wide applicable range, and the comparison of experimental results with numerical analysis results confirms the validity of the newly proposed ductile fracture criterion based on the GT porous material model.
A fracture criterion derived from a microscopic point of view is proposed and has proved to be effective in the analysis of uniaxial tension. On the one hand, a method of predicting a ductile fracture is proposed using a three-dimensional void model and the assumption of velocity discontinuity. The relationship between the void volume fraction and the critical strain to fracture, calculated with the help of the new model, shows the same tendency as that obtained from the modified Thomason model. On the other hand, the mechanical and metallographic analyses of the uniaxial tension experiment are performed using four kinds of carbon steel. The relationship between the void volume fraction and the critical strain to fracture, calculated from the new model, agrees better with the result obtained from the experiment, rather than that calculated by the modified Thomason model, which confirms the validity of the ductile fracture criterion based on the three-dimensional void model.
An adaptive finite element-element-free Galerkin (FE-EFG) coupling method is proposed and developed for the numerical simulation of bulk metal forming processes. This approach is able to adaptively convert distorted FE elements to EFG domain in analysis. A new scheme to implement adaptive conversion and coupling is presented. The coupling method takes both advantages of finite element method (FEM) and meshless methods. It is capable of handling large deformations with no need of remeshing procedures, while it is computationally more efficient than those full meshless methods. The effectiveness of the proposed method is demonstrated with the numerical simulations of the bulk metal forming processes including forging and extrusion.
The Gurson-Tvergaard-Needleman(GTN) damage model was developed basing on anisotropic yield criterion to predict the damage evolution for anisotropic voided ductile materials.Hill's quadratic anisotropic yield criterion(1948) and Barlat's 3-component anisotropic yield criterion(1989) were used to describe the anisotropy of the matrix.User defined subroutines were developed using the above models.Taking the benchmark of NUMISHEET'93 square cup deep drawing as an example, the effect of matrix plastic anisotropy on a ductile material was studied.The predicted result by Barlat'89-GTN model has a better agreement with the experimental data than that by Hill'48-GTN and the original GTN model.
The one-step finite element method (FEM), based on plastic deformation theory, has been widely used to simulate sheet metal forming processes, but its application in bulk metal forming simulation has been seldom investigated, because of the complexity involved. Thus, a bulk metal forming process was analyzed using a rapid FEM based on deformation theory. The material was assumed to be rigid-plastic and strain-hardened. The constitutive relationship between stress and total strain was adopted, whereas the incompressible condition was enforced by penalty function. The geometrical non-linearity in large plastic deformation was taken into consideration. Furthermore, the force boundary condition was treated by a simplified equivalent approach, considering the contact history. Based on constraint variational principle, the deformation FEM was proposed. The one-step forward simulation of axisymmettic upsetting process was performed using this method. The results were compared with those obtained by the traditional incremental FEM to verify the feasibility of the proposed method.