The state-space method is employed to evaluate the modal parameters of functionally graded, magneto-electro-elastic, and multilayered plates. Based on the assumption that the properties of the functionally graded material are exponential, the state equation of structural vibration which takes the displacement and stress of the structure as state variables is derived. The natural frequencies and modal shapes are calculated based on the general solutions of the state equation and boundary conditions given in this paper. The influence of the functionally graded exponential factor on the elastic displacement, electric, and magnetic fields of the structure are discussed by assuming a sandwich plate model with different stacking sequences.