In this paper, we study the directional derivative, subderivative, and subdifferential of sup-type functions without any compactness assumption on the index set. As applications, we provide an estimate of the Lipschitz modulus for sup-type functions.
In this paper, we propose a theoretical framework of an infeasible interior-point algorithm for solving monotone linear cornplementarity problems over symmetric cones (SCLCP). The new algorithm gets Newton-like directions from the Chen-Harker-Kanzow-Smale (CHKS) smoothing equation of the SCLCP. It possesses the following features: The starting point is easily chosen; one approximate Newton step is computed and accepted at each iteration; the iterative point with unit stepsize automatically remains in the neighborhood of central path; the iterative sequence is bounded and possesses (9(rL) polynomial-time complexity under the monotonicity and solvability of the SCLCP.
In this paper, we adopt the robust optimization method to consider linear complementarity problems in which the data is not specified exactly or is uncertain, and it is only known to belong to a prescribed uncertainty set. We propose the notion of the p-robust counterpart and the p-robust solution of uncertain linear complementarity problems. We discuss uncertain linear complementarity problems with three different uncertainty sets, respectively, including an unknown-but-bounded uncertainty set, an ellipsoidal uncertainty set and an intersection-of-ellipsoids uncertainty set, and present some sufficient and necessary (or sufficient) conditions which p-robust solutions satisfy. Some special eases are investigated in this paper.
In this paper, we propose a smoothing algorithm for solving the monotone symmetric cone complementarity problems (SCCP for short) with a nonmonotone line search. We show that the nonmonotone algorithm is globally convergent under an assumption that the solution set of the problem concerned is nonempty. Such an assumption is weaker than those given in most existing algorithms for solving optimization problems over symmetric cones. We also prove that the solution obtained by the algorithm is a maximally complementary solution to the monotone SCCP under some assumptions.