The volatile pollutants that spill into natural waters cause water pollution. Air pollution arises from the water pollution because of volatilization. Mass exchange caused by turbulent fluctuation is stronger in the direction normal to the air-water interface than in other directions due to the large density difference between water and air. In order to explore the characteristics of anisotropic diffusion of the volatile pollutants at the air-water interface, the relationship between velocity gradient and mass transfer rate was established to calculate the turbulent mass diffusivity. A second-order accurate smooth transition differencing scheme (STDS) was proposed to guarantee the boundedness for the flow and mass transfer at the air-water interface. Simulations and experiments were performed to study the trichloroethylene (C2HC13) release. By comparing the anisotropic coupling diffusion model, isotropic coupling diffusion model, and non-coupling diffusion model, the features of the transport of volatile pollutants at the air-water interface were determined. The results show that the anisotropic coupling diffusion model is more accurate than the isotropic coupling diffusion model and non-coupling diffusion model. Mass transfer significantly increases with the increase of the air-water relative velocity at a low relative velocity. However, at a higher relative velocity, an increase in the relative velocity has no effect on mass transfer.
A transient three-dimensional coupling model based on the compressible volume of fluid (VOF) method was developed to simulate the transport of volatile pollutants at the air-water interface. VOF is a numerical technique for locating and tracking the free surface of water flow. The relationships between Henry's constant, thermodynamics parameters, and the enlarged topological index were proposed for nonstandard conditions. A series of experiments and numerical simulations were performed to study the transport of benzene and carbinol. The simulation results agreed with the experimental results. Temperature had no effect on mass transfer of pollutants with low transfer free energy and high Henry's constant. The temporal and spatial distribution of pollutants with high transfer free energy and low Henry's constant was affected by temperature. The total enthalpy and total transfer free energy increased significantly with temperature, with significant fluctuations at low temperatures. The total enthalpy and total transfer free energy increased steadily without fluctuation at high temperatures.
利用能精确捕获水自由液面的VOF(Volume of fluid,体积百分比)法,建立挥发性化合物在无化学反应条件下的耦合扩散时空模型.用W*(分子拓扑指数)表征化合物分子结构,将化合物传质系数——Schmid数与W*进行关联,结合亨利常数、Schmidt数与W*的关联式,预测乙醇、苯、己醛与2,2,4-三甲基戊点源泄漏后的质量浓度时空分布,预测结果与试验吻合较好.烷基苯、醇、醛、烃类化合物的Schmidt数与W*0.25成线性关系.Schmidt数随分子间距减小而增大,烷基苯、醇、醛、烃类化合物在水中的Schmidt数约为空气中的600倍以上.相同W*的化合物,Schmidt数随分子量增加而增大.泄漏初期,亨利常数的作用高于Schmidt数,挥发强度随亨利常数的增加而增大,水中乙醇峰值浓度下降的平均速率仅是苯的45.1%;泄漏后期,Schmidt数起主要作用,挥发强度随Schmidt数减少而增大,苯的峰值浓度下降平均速率降低,乙醇峰值浓度下降平均速率比苯高120.0%.己醛的W*是2,2,4-三甲基戊的16.27倍,但二者的亨利常数和Schmidt数很接近,挥发迁移过程极其相似.