This paper describes the deployment optimization technology and the cross-layer design of a surveil-lance WSN system applied in relic protection.Facing the typical technical challenges in the applicationcontext of relic protection,we firstly propose a deployment technology based on ant colony optimization al-gorithm(DT-ACO)to overcome the difficulties in communication connectivity and sensing coverage.Meanwhile,DT-ACO minimizes the overall cost of the system as much as possible.Secondly we proposea novel power-aware cross-layer scheme(PACS)to facilitate adjustable system lifetime and surveillanceaccuracy.The performance analysis shows that we achieve lower device cost,significant extension of thesystem lifetime and improvement on the data delivery rate compared with the traditional methods.
数据融合是降低无线传感器网络的冗余能耗、延长网络生存期的有效手段之一.传输延时的分配是数据融合中的重要问题,它对网络融合的效果和数据分组的传输延迟具有很大影响.提出了一种基于融合贡献的传输延时分配算法ACDA(aggregate contribution based delay-time allocation),量化了路由树中不同位置的节点对融合效果的影响,并依此按比例分配融合等待时间.算法充分考虑到了各节点在路由树中的位置差异性和节点间的相互影响.仿真结果表明,同现有的几种延时分配算法相比,ACDA能够更加有效地改进数据融合效果,提高网络实时性.