Rayleigh-Marangoni-Bénard instability in a system of two-layer fluids is studied nu- merically.The convective instabilities in the system of Silicon Oil(10cSt)and Fluorinert(FC70)liquids have been analyzed.The critical parameters at onset of convection are presented in a large range of two-layer depth ratios from 0.2 to 5.0.Numerical results show that the instability of the two-layer system depends strongly on its depth ratio.When the depth ratio increases,the instability mode changes from mechanical coupling to thermal coupling.Between these two typical coupling modes, a time-dependent oscillation is detected.Nevertheless,traveling wave states are found in the case of oscillatory instability.The oscillation mode results from the competition between Rayleigh instability and Marangoni effect.
Classical theories have successfully provided an explanation for convection in a liquid layer heated from below without evaporation. However, these theories are inadequate to account for the convective instabilities in an evaporating liquid layer, especially in the case when it is cooled from below. In the present paper, we study the onset of Marangoni convection in a liquid layer being overlain by a vapor layer. A new two-sided model is put forward instead of the one-sided model in previous studies. Marangoni-Béard instabilities in evaporating liquid thin layers are investigated with a linear instability analysis. We define a new evaporation Blot number, which is different from that in previous studies and discuss the influences of reference evaporating velocity and evaporation Blot number on the vapor-liquid system. At the end, we explain why the instability occurs even when an evaporating liquid layer is cooled from below.